Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Development of a plasma Faraday rotation calculator for an XFEL pulse

Ordyna, P.

Abstract

This thesis presents a computational tool for obtaining the Faraday rotation of an X-Ray pulse propagating through a plasma. The fields, needed for the calculation, can be obtained from either a three or a two-dimensional simulation. In the 2D case, a half turn rotational symmetry is assumed and a numerical implementation of the underlying Abel integral is implemented so the Faraday effect can be obtained from the radial distribution. A time-resolved calculation is introduced by integrating the effect over an X-ray pulse, with a specified temporal shape, and using multiple outputs from various iterations. The prototype is developed using Python/Cython and tested in a few simple, analytically solvable scenarios. The main motivation for this tool are planned experiments to study relativistic laser-matter-interactions with help of the ultra-bright XFEL pulses. Hence, examples of such interaction are simulated with the PIConGPU framework, and the developed prototype is used to examine the influence of Rayleigh-Taylor and Weibel-like instabilities on the Faraday rotation effect.

  • Bachelor-Arbeit
    TU Dresden, 2019
    47 Seiten

Permalink: https://www.hzdr.de/publications/Publ-29660