Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

A review on stretchable magnetic field sensorics

Melzer, M.; Makarov, D.; Schmidt, O. G.

Abstract

The current establishment of stretchable electronics to form a seamless link between soft or
even living materials and the digital world is at the forefront of multidisciplinary research
efforts, bridging physics, engineering and materials science. Magnetic functionalities can
provide a sense of displacement, orientation or proximity to this novel formulation of
electronics. This work reviews the recent development of stretchable magnetic field sensorics
relying on the combination of metallic thin films revealing a giant magnetoresistance effect
with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved
by specific morphologic features (e.g. wrinkles or microcracks), which accommodate the
applied tensile deformation while maintaining the electrical and magnetic integrity of the
sensor device. The entire development, from the demonstration of the world’s first elastically
stretchable magnetic sensor to the realization of a technology platform for robust, ready-touse
elastic magnetosensorics is described. Soft giant magnetoresistive elements exhibiting the
same sensing performance as on conventional rigid supports, but with fully strain invariant
properties up to 270% stretching have been demonstrated. With their unique mechanical
properties, these sensor elements readily conform to ubiquitous objects of arbitrary shapes
including the human skin. Stretchable magnetoelectronic sensors can equip soft and epidermal
electronic systems with navigation, orientation, motion tracking and touchless control
capabilities. A variety of novel technologies, like electronic skins, smart textiles, soft robotics
and actuators, active medical implants and soft consumer electronics will benefit from these
new magnetic functionalities.

Keywords: shapeable magnetic field sensors; stretchable electronics

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-30262