Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Calculation of defect- and interface-induced electronic states in 2D materials

Wagner, C.; Gemming, S.

Abstract

Two-dimensional (2D) materials feature exceptional electronic and optoelectronic properties controlled by the strong confinement in the third dimension. Here, we present calculations within the framework of density functional theory (DFT) to assess the change of 2D materials and their properties under the influence of deviations from the purely 2D nature.
Significant changes to the electronic and optical properties have been monitored already in free-standing 2D layers when comparing structurally perfect monolayers and slightly thicker multilayer structures of the same material, although the multilayer still obeys the same ideal 2D periodicity as the monolayer does. This effect becomes more pronounced once the in-plane symmetry is reduced by rotational stacking faults between the layers of a single 2D material, in van-der-Waals bound heterostructures with other 2D materials, or in the proximity of the substrate. If the adjacent 2D crystal lattices are (nearly) commensurate, such structures still obey periodic boundary conditions in-plane, but with larger superlattice vectors. In that case, the electronic structure undergoes additional modulations within the supercell, which are then periodically repeated in 2D. From a symmetry point of view, the decoration of 2D materials with two-dimensionally periodic assembled organic films may lead to very similar lateral superlattice features, although the interaction of the 2D layer and the individual molecules of the film is local. That provides the possibility to use molecular functionalization for enhancing or suppressing such superlattice features in a predefined way. Finally, decoration can also be employed to heal local structural and electronic defects, which occur depending on the synthesis conditions and break the ideal 2D periodicity of realistic samples. Electronic confinements along 1D boundary lines or localized states at intrinsic defects on the faces cause rather strong local and non-periodic changes of the 2D properties. Calculations suggest that in the limit of low defect density, i.e., below the percolation threshold, the long-range properties of such systems still maintain their 2D nature, but additional effects, such as scattering may result from the interaction with the defects.
Molybdenum sulfide is a well-studied binary 2D material, which exhibits all those effects without the need to add additional elements, e.g. hydrogen, to saturate dangling bonds at termination sites. The implications for other, electronically more complex materials such as graphene will be discussed.

Keywords: 2D materials; DFT; Bethe-Salpeter; Density-functional perturbation theory; MoS2; GaSe; bilayer; van-der-Waals heterostructure; interlayer exciton

  • Eingeladener Vortrag (Konferenzbeitrag)
    International Symposium on Epi-Graphene, 25.-28.08.2019, Chemnitz, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-30306