Coupling of Lamb Waves and Spin Waves in Multiferroic Heterostructures


Coupling of Lamb Waves and Spin Waves in Multiferroic Heterostructures

Tiwari, S.; Schneider, J. D.; Wintz, S.; Arekapudi, S. S. P. K.; Lenz, K.; Andres, C.; Lindner, J.; Hellwig, O.; Gregory, P. C.; Robert, N. C.

Abstract

In this work, we investigate magneto-acoustic attenuation in thin film multiferroic Lamb wave delay lines. By leveraging magneto-acoustic interactions, multiferroics have potential to realize passive chip-scale alternatives to bulky ferrite devices. For the first time, magnetic field dependence of magnetoacoustic interactions in multiferroic Lamb wave devices is characterized. Multiferroic heterostructures of aluminum nitride and cobalt iron boron are fabricated into Lamb wave delay lines operating at 7.492 GHz to study the effect of strain nonuniformity on the multiferroic coupling. The attenuation of the Lamb waves is characterized as a function of the magnitude and angle of an applied in-plane bias magnetic field. It is found that the bias magnitude for peak attenuation is a strong function of angle, indicating that it is due to coupling between the Lamb waves and spin wave modes. This is in contrast with current models of attenuation in multiferroic SAW delay lines, where the uniform surface strains couple to ferromagnetic resonance, which has no angular dependence on the in-plane bias field magnitude. These results are the first steps towards passiv chip-scale alternatives to ferrite devices utilizing Lamb wave devices, which have better coupling and scalability than their SAW counterparts.

Keywords: Acoustic delay lines; Lamb waves; magnetoacoustics; MEMS; multiferroics; spin waves

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30958