Solar-selective coatings for high-temperature solar applications based on a selective transmitter on top of a black body absorber


Solar-selective coatings for high-temperature solar applications based on a selective transmitter on top of a black body absorber

Krause, M.; Lungwitz, F.; Mendez, A.; Hoppe, M.; Sonnenberg, J.; Garcia Valenzuela, A.; Munnik, F.; Grenzer, J.; Hübner, R.; Escobar Galindo, R.

Abstract

An alternative concept to achieve solar selectivity for solar thermal materials and applications consists in the use of spectrally selective transmitter coatings.[1] These are characterized by a high transmittance in the solar range and a high reflectance in the thermal range of the electromagnetic spectrum. Suitable materials for selective transmitters are dielectric/metal/dielectric multilayers and transparent conductive oxides (TCOs).[2] The concept has a series of advantages compared to multilayer- or cermet-based solar-selective coatings (SSCs) like the easiness of manufacturing, the possibility to use standard materials as transmitter (e.g., indium tin oxide (ITO)) and absorber (e.g. Pyromark or black chrome), and the adaptability to specific requirements with respect to receiver temperature and solar concentration factor.
After a conceptual introduction, an analysis of solar plant parameters, i.e., operation temperature and solar concentration, for which this concept provides a better solar efficiency than state-of-the-art bare black body absorber, will be given.[3] We will then review the recent developments in the field, which include an excellent high-temperature in-air stability of such type of solar coatings.[4] In the second part of the talk, we will report own results toward a new TCO on black body absorber coating. Vacuum and in-air stability of the TCO SnO2:Ta at 800 °C and its structural properties before and after heat exposure are demonstrated. As potential absorber, the formation, structure, and optical properties of dense, PVD-grown CuCr2O4 thin films are studied. They are obtained in high purity from as-deposited samples by a simple in-air annealing step at 800 °C and absorb light in the whole solar range from 300 nm to 2500 nm.

[1] C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL Technical Reports, NREL - National Renewable Energy Laboratory, Golden, Colorado, USA, 2002.
[2] J.C.C. Fan, F.J. Bachner, Transparent heat mirrors for solar-energy applications, Applied Optics 15(4) (1976) 1012-1017.
[3] F. Lungwitz, R. Escobar-Galindo, D. Janke, E. Schumann, R. Wenisch, S. Gemming, M. Krause, Transparent conductive tantalum doped tin oxide as selectively solar-transmitting coating for high temperature solar thermal applications, Solar Energy Materials and Solar Cells 196 (2019) 84-93.
[4] H. Wang, I. Haechler, S. Kaur, J. Freedman, R. Prasher, Spectrally selective solar absorber stable up to 900 degrees C for 120 h under ambient conditions, Solar Energy 174 (2018) 305-311.

Keywords: Solar energy; Concentrated solar power; Solar selective coatings; Transparent conductive oxides; Spinel type absorber

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Eingeladener Vortrag (Konferenzbeitrag) (Online Präsentation)
    Virtual MRS Spring Meeting 2021, Symposium EN05: Materials Challenges and Opportunities in Concentrated Solar Power Technologies, 19.-23.04.2021, Virtuell, USA

Permalink: https://www.hzdr.de/publications/Publ-32810