Direct tomographic observation of brine percolation into MgO-shotcrete drill cores


Direct tomographic observation of brine percolation into MgO-shotcrete drill cores

Kulenkampff, J.

Abstract

Heterogeneity and tightness of the barrier demand particular sensitive and lasting measuring methods, as well as resolution of small details. For this reason we developed a guard-ring surface-packer for process tomography of brine migration into barrier material with positron-emission-tomography (PET). Based on radiolabeling, this method is extremely sensitive, non-destructive and without retroaction.
As example for transport in the engineered barrier, we investigated injection of [²²Na]NaCl-sat – solution from a fluid reservoir with a diameter of 20 mm into the contact zone of adjacent MgO-shotcrete layers. The driving pressure was 2 bar, which caused intrusion of 1 mL of solution over a period of 260 d.
Overlay of the sequence of PET images and the structural CT image shows that deeper penetration (> 10 mm) occurred predominantly along one single pathway that was predetermined by the porous structure. Also, we observed a slowly propagating diffuse front that encompassed only a small portion of the injected fluid.
Although the permeability of the material is very low (1e-20 m²), the major portion of the brine propagates through a very confined channel and thus may reach a significant penetration depth, beyond the predictions based on assumed homogeneous material.

Keywords: radioactive waste disposal; engineered barrier; transport experiments; positron emission tomography; CT; MgO

  • Open Access Logo Vortrag (Konferenzbeitrag)
    Saltmech X, 05.-08.07.2022, Utrecht, Nederland
    DOI: 10.1201/9781003295808
  • Open Access Logo Beitrag zu Proceedings
    10th Conference on the Mechanical Behavior of Salt (SaltMech X), 05.-08.07.2022, Utrecht, Nederland
    The Mechanical Behavior of Salt X Proceedings of the 10th Conference on the Mechanical Behavior of Salt (SaltMech X), Utrecht, The Netherlands, 06-08 July 2022, London: CRC Press, 9781003295808, 98-106
    DOI: 10.1201/9781003295808

Permalink: https://www.hzdr.de/publications/Publ-32939