Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Nonlinear interaction of external perturbations in Warm Dense Matter

Dornheim, T.; Vorberger, J.; Moldabekov, Z.; Bonitz, M.

Abstract

We present extensive new ab initio path integral Monte Carlo (PIMC) results for an electron gas at warm dense matter conditions that is subject to multiple harmonic perturbations. In addition to the previously investigated nonlinear effects at the original wave number [Dornheim \emph{et al.}, PRL \textbf{125}, 085001 (2020)] and the excitation of higher harmonics [Dornheim \emph{et al.}, PRR \textbf{3}, 033231 (2021)], the presence of multiple external potentials leads to mode-coupling effects, which constitute the dominant nonlinear effect and lead to a substantially more complicated density response compared to linear response theory. One possibility to estimate mode-coupling effects from a PIMC simulation of the unperturbed system is given in terms of generalized imaginary-time correlation functions that have been recently introduced by Dornheim \emph{et al.}~[JCP \textbf{155}, 054110 (2021)]. In addition, we extend our previous analytical theory of the nonlinear density response of the electron gas in terms of the static local field correction [Dornheim \emph{et al.}, PRL \textbf{125}, 235001 (2020)], which allows for a highly accurate description of the PIMC results with negligible computational cost.

Keywords: Nonlinear response; warm dense matter; path integral Monte Carlo; mode coupling

Downloads

Permalink: https://www.hzdr.de/publications/Publ-33424