Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

2 Publikationen

Fully characterised and online monitored beamline for high dose rate laser proton irradiation experiments at Draco PW

Brack, F.-E.; Kroll, F.; Gaus, L.; Bernert, C.; Beyreuther, E.; Cowan, T.; Karsch, L.; Kraft, S.; Leßmann, E.; Metzkes-Ng, J.; Pawelke, J.; Rehwald, M.; Reimold, M.; Schlenvoigt, H.-P.; Schramm, U.; Sobiella, M.; Umlandt, M. E. P.; Ziegler, T.; Zeil, K.

Abstract

Laser-driven proton pulse provide unique properties in terms of pulse structure (ns) and instantaneous dose rate (10^9 Gy/s) but - inherently broadband and highly divergent - pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for three-dimensional cases. We present the successful implementation and characterisation of a highly efficient and tuneable dual pulsed solenoid beamline at the Draco PW facility[1] to generate volumetric dose distribution tailored to specific applications[2].
The vast experimental scope and already successfully performed studies range from systematic volumetric in-vivo tumour irradiations in a dedicated mouse model (with a stable mean dose delivery of ±10 % and a spatial dose homogeneity of ±5 % over a cylindrical volume of 5 mm diameter and height) to high-dose-rate irradiations in the FLASH regime (using proton peak dose rates of up to 10^9 Gy/s with about 20 Gy/shot homogeneously over a cylindrical sample volume of 4.5 mm diameter and 3 mm height) as well as particle diagnostics commissioning (with a multitude of spatial and spectral dose distributions).
The beamline setup is complemented by a complex beam monitoring and dosimetry detector suite adapted to the ultra-high dose rate pulses and is in its unique synergy and redundancy capable of %-level precision dose delivery to samples as required for systematic irradiation studies. In addition to established radiochromic film dosimetry, the detector suite includes saturation-corrected (transmission) ionisation chambers [3] as well as screen and bulk scintillator setups, partly with tomographic reconstruction capabilities for 3D dose distribution retrieval. Moreover, non-invasive, single-shot-capable online time-of-flight-based spectral characterisation of filtered proton pulses has proven a powerful tool for beam monitoring as well as dosimetric purposes.
In this presentation the complex and versatile dose delivery system of laser-driven protons at the Draco PW using pulsed solenoids will be discussed. Its characterisation, technological development and improvement as well as the dosimetry suite as a vital part of the precise dose delivery will be addressed, while the presentation by U. Schramm covers recent experimental activities in detail.
[1] T. Ziegler, et al., Proton beam quality enhancement by spectral phase control of a PW-class laser system, https://arxiv.org/abs/2007.11499 (2020)
[2] Brack, et al., Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline, SciRep, 10:9118, (2020)
[3] Gotz M, et al., A new model for volume recombination in plane‐parallel chambers in pulsed fields of high dose‐per‐pulse. Phys Med Biol., 62: 8634, (2017)

  • Eingeladener Vortrag (Konferenzbeitrag) (Online Präsentation)
    SPIE 2021 ALPA, 21.04.2021, Prague, Czech Republic
  • Sonstiger Vortrag (Online Präsentation)
    LPA online seminar, 10.03.2021, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-33639