Oxidation State Dependent Conjugation Controls Electrocatalytic Activity in a Two-Dimensional Di-Copper Metal–Organic Framework


Oxidation State Dependent Conjugation Controls Electrocatalytic Activity in a Two-Dimensional Di-Copper Metal–Organic Framework

Maria Dominic, A.; Wang, Z.; Kuc, A. B.; Petkov, P.; Khoa Ly, H.; Lam Huong Pham, T.; Kutzschbach, M.; Cao, Y.; Bachmann, J.; Feng, X.; Dong, R.; Weidinger, I. M.

Abstract

Interfacial synthetic Cu-phthalocyanine-based two-dimensional conjugated metal-organic framework (CuPc-CuO4 2D c-MOF) films were transferred to graphite electrodes and analyzed via electrochemical resonance Raman spectroscopy. Comparison of CuPc-CuO4 with the corresponding monomer, combined with Density Functional Theory (DFT) calculations allowed a detailed assignment of the vibrational bands. CuPc-CuO4 films attached to graphite electrodes via an Nickel-Nitrilo Triaacetic Acid (Ni-NTA) linker exhibited excellent bifunctional catalytic activity towards oxygen reduction (ORR) and oxygen evolution (OER) reaction. Potential dependent Raman spectroscopy yielded three different species in the respective potential window that could be assigned to an ORR active CuI/CuI state, an inactive CuII/CuI state and an CuII/CuII state that could be activated for OER. From the spectroelectrochemical data, the redox potentials of Cu in the CuPc moieties and the Cu-catecholate nodes could be determined to be ECuPc = -0.04 V and ECuO4 = 0.33 V vs. Ag|AgCl, respectively. Furthermore, DFT calculations of bandagps and density of states showed the smalest bandgap and highest -conjugation for the CuI/CuI state and the largest bandgap and lower conjugation for the mixed CuII/CuI state state, agreeing very well with the experimental activity of the species. Our results suggest that the coupling between metal oxidation changes and long range electron transfer of the 2D c-MOF is a key parameter to achieve the high electrocatalytic activity.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34761