Insights into the Enigmatic TcO₂·xH₂O Structure via Atomistic Simulations


Insights into the Enigmatic TcO₂·xH₂O Structure via Atomistic Simulations

Faria Oliveira, A.; Kuc, A. B.; Heine, T.; Scheinost, A.

Abstract

Technetium is the lightest element without a stable isotope. The β‑emitting ⁹⁹Tc is especially relevant for nuclear waste management due to its long half-life (ca. 2.1×10⁵ years) and relatively high formation yield (≥6%) in ²³⁵U and ²³⁹Pu nuclear reactors. In this context, redox reactions at mineral/water interfaces are crucial for the safety of nuclear waste repositories.

In the absence of complexing agents, Tc exists in water as Tc(VII) and Tc(IV). The former predominates in non-reducing conditions as TcO₄⁻(aq), which is highly mobile in the environment due to its solubility and weak interaction with adsorbents. Studies show that Fe(II) minerals can reduce Tc(VII) to Tc(IV), which is then immobilized by adsorption onto or incorporation into the oxidized Fe mineral and by precipitation as TcO₂·xH₂O. However, even in the simpler case (precipitation) the structure of TcO₂·xH₂O remains controversial.

Lukens et al. [1] demonstrated that, despite being amorphous, TcO₂·xH₂O has a well-defined local structure. Based on EXAFS measurements, they proposed that TcO₂·xH₂O forms linear chains of equally spaced edge-sharing TcO₄(H₂O)₂ octahedra, with terminal H₂O ligands at the apical positions. Vichot et al. [2] obtained similar results but, despite having extracted only one Tc‑Tc distance from the EXAFS, proposed that Tc atoms would be separated by shorter and longer alternating distances as in the monoclinic TcO₂ crystal. More recently, Yalçintaş et al. [3] showed that both models can be fitted equally well to the EXAFS and, thus, the TcO₂·xH₂O structure remained unsolved.

In this work, we use density functional theory (DFT) to investigate the polymeric TcO₂·xH₂O structure. Our calculations reveal that, in contrast to previous models, a zigzag configuration with the terminal H₂O groups at neighboring positions of the octahedra is more likely. The zigzag configuration is energetically more favored and results in a better agreement with the EXAFS measurement.

[1] Lukens et al. (2002), Environ. Sci. Technol. 36, 1124-1129.
[2] Vichot et al. (2002), Radiochim. Acta 90, 575-579.
[3] Yalçintaş et al. (2016), Dalton Trans. 45, 17874-17885.

Keywords: DFT; EXAFS; Technetium

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag) (Online Präsentation)
    Goldschmidt2022, 10.-15.07.2022, Honolulu, Hawaii, USA

Permalink: https://www.hzdr.de/publications/Publ-34773