Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Metal-assisted chemically etched silicon nanopillars hosting telecom photon emitters

Hollenbach, M.; Jagtap, N. S.; Fowley, C.; Baratech, J.; Guardia-Arce, V.; Kentsch, U.; Eichler-Volf, A.; Abrosimov, N. V.; Erbe, A.; Shin, C.; Kim, H.; Helm, M.; Lee, W.; Astakhov, G.; Berencen, Y.

Abstract

Silicon, a ubiquitous material in modern computing, is an emerging platform for realizing a source of indistinguishable single photons on demand. The integration of recently discovered single-photon emitters in silicon into photonic structures is advantageous to exploit their full potential for integrated photonic quantum technologies. Here, we show the integration of an ensemble of telecom photon emitters in a two-dimensional array of silicon nanopillars. We developed a top-down nanofabrication method, enabling the production of thousands of nanopillars per square millimeter with state-of-the-art photonic-circuit pitch, all the while being free of fabrication-related radiation damage defects. We found a waveguiding effect of the 1278 nm-G center emission along individual pillars accompanied by improved brightness compared to that of bulk silicon. These results unlock clear pathways to monolithically integrating single-photon emitters into a photonic platform at a scale that matches the required pitch of quantum photonic circuits.

Keywords: G centers; Silicon nanopillars; Photonic integration; Metal-assisted chemical etching; Ion implantation

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-34938