Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

The influence of the bentonite type on the corrosion of cast iron

Sushko, V.; Dressler, M.; Kluge, S.; Matschiavelli, N.; Schierz, A.; Stumpf, T.; Cherkouk, A.

Abstract

1 Introduction
Bentonite is considered as buffer and sealing material in a multi-barrier system for a deep geologic repositories (DGR) of nuclear waste and spent fuel [1]. Another part of the engineered barrier system is the containment of the radioactive waste. Cast iron is often taking into account for the construction of the containers as a candidate material [2]. But the cast iron components are fairly unstable, can corrode to insoluble corrosion products and react with the bentonite buffer matrix. Anaerobic corrosion together with microbially influenced corrosion are dominant forms of corrosion in the a DGR and the interactions at the metal/bentonite interface determines the performance of bentonite-based radioactive waste barriers [3]. The aim of the current study was to characterize the surface damage associated with corrosion of the cast iron and to compare the potential of the indigenous microorganisms present in different bentonites to influence the corrosion of cast iron.

2 Results
Three types of bentonite (B25, Calcigel, MX-80) were chosen for mesocosm-experiment setup as described in [4]. All three bentonites have different smectite content and an indigenous microbial community. The mesocosms with cast iron coupons, artificial Opalinus clay porewater and bentonite were incubated in N2/CO2 atmosphere for 271 days at 30 °C. Some of the mesocosms were supplemented with 5 mM sodium lactate and hydrogen (to a 0.5 bar of total pressure) to stimulate microbial activity. After the incubation period the content of the mesocosms was divided and subjected to different analysis, including geochemical analysis (as e.g. ICP-MS, ion and high-performance liquid chromatography), DNA isolation and amplification of the intergenic spacer to determine the microbial community structure, SEM-EDX and RAMAN spectroscopy to characterize the surface damage of the cast iron coupons.
The black precipitates were visible in the mesocosms containing Calcigel with lactate as substrate and for all the substrate-containing samples with MX-80. The obtained geochemical data confirmed the differences in the different microcosms by demonstrating unequal levels of sulphate and lactate consumption. Moreover, surface analysis of the cast iron coupons showed that corrosion rate and metabolite accumulation are also dependent on the bentonite type. In addition different microbial community structure was observered by intergenic spacer analysis (RISA) depending on the conditions applied and used bentonite. Therefore, the used bentonites varied in respect to reactivity and microbial activity.
Overall, the results show the importance of selection of suitable bentonite for DGR to adjust microbial implications and possibly faster corrosion rate of the metal containers.
We acknowledge funding by the BMBF (Grant 02NUK053B) and HGF (Grant SO-093).
References
[1] P. Sellin and etc., The Use of Clay as an Engineered Barrier in Radioactive-Waste Management – A Review, Clays and Clay Minerals 61(6), pp. 477-498 (2014).
[2] F. King. Container Materials for the Storage and Disposal of Nuclear Waste, Corrosion 69(10), pp. 986-1011 (2013).
[3] S. Kaufhold and etc. About the Corrosion Mechanism of Metal Iron in Contact with Bentonite, ACS Earth Space Chem. 4, 5, pp. 711–721 (2020).
[4] N. Matschiavelli and etc., The Year-Long Development of Microorganisms in Uncompacted Bavarian Bentonite Slurries at 30 and 60 °C, Environ. Sci. Technol., 53, 17, 10514–10524 (2019)

Keywords: Corrosion; Bentonite

  • Open Access Logo Poster (Online presentation)
    Tage der Standortauswahl, 11.-12.02.2021, Freiberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-34957