Experimental and Theoretical Analyses of Adiabatic Two-phase Flows in Horizontal Feed Pipes


Experimental and Theoretical Analyses of Adiabatic Two-phase Flows in Horizontal Feed Pipes

Döß, A.

Abstract

The majority of technical separation processes for fluid mixtures utilize the principle of rectification. If a two-phase mixture is fed into the column, possibly undesirable flow morphologies or severe droplet carry-over may occur, which detrimentally affect separation efficiency and equipment integrity. Currently, the two-phase flow behavior in feed pipes is hardly predicable and mostly based on empirical or heuristic methods, which do not properly account for a broad range of possible fluid properties and plant dimensions. As a consequence, costly safety margins are applied. Feed pipes to separation columns are often characterized by horizontal inlet nozzles, small length-to-diameter ratios and complex routing, involving elbows or bends. The pipe lengths are too short to enable the two-phase flow to fully develop, which thus, enters the column with unknown flow morphology. Since developing flows have rarely been studied, today’s engineering practice relies on existing predictive methods for fully developed two-phase flows. Graphical methods can hardly represent gradual transitions between flow regimes. Analytical models provide only simplified flow representations of the two-phase flow that have not yet been qualified for developing pipe flow. In this work, a comprehensive experimental database of horizontal water-air flows in two test sections with nominal pipe diameters of D = 50 mm and D = 200 mm and feed pipe lengths in the range 10 < L/D < 75 was established. This way, the data cover developing pipe flows with entrance lengths typical for two-phase feeds of separation columns and more developed flows that are comparable with the extensively studied reference system water-air. A particular focus was put on the effect of pipe bends on the flow morphology up- and downstream. The flow morphology was captured using imaging wire-mesh sensors. A 4D fuzzy algorithm was applied to objectively identify the flow two-phase morphologies. Based on their fuzzy representation, the flow morphologies were classified and a novel 2D visualization technique is proposed to discuss the flow development along the feed pipes. Undesired flow morphologies (intermittent flow and entrainment) during the operation of two-phase feeds are hardly predictable by conventional design tools. The inception of intermittent flows was analyzed using the experimental data. Consequently, the inception criteria based on the required liquid levels for fully developed intermittent flows were adapted for short entrance lengths. The characteristic dynamics of flow morphologies that are known to cause the onset of entrainment were analyzed. Based on wave frequencies, a predictive criterion for the susceptibility of wavy flows for the onset of entrainment is introduced and applied to straight feed pipes and horizontal 90° bends. Among the dozens available, 66 reduced-order models for the prediction of the void fraction were tested for straight feed pipes and horizontal 90° pipe bends. Thereof, the ones most suitable for variable operating conditions and pipe geometries were identified and adapted. Complementary 3D simulations were performed to verify the applicability of numerical codes (VoF, AIAD) for flows with free interfaces. The flow morphologies were successfully reproduced at macroscopic scale, however, the simulation results rank behind reduced-order models considering their quantitative predicting capabilities.

Keywords: Distillation; Two-phase feed; Flow morphology; Horizontal two-phase flow

Beteiligte Forschungsanlagen

  • TOPFLOW-Anlage
  • Dissertation
    TU Dresden, 2022
    PURL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-827786

Permalink: https://www.hzdr.de/publications/Publ-36039