Global Polynomial Level Sets for Numerical Differential Geometry of Smooth Closed Surfaces


Global Polynomial Level Sets for Numerical Differential Geometry of Smooth Closed Surfaces

Thekke Veettil, Sachin K.; Zavalani, G.; Hernandez Acosta, U.; Sbalzarini, Ivo F.; Hecht, M.

Abstract

We present a computational scheme that derives a global polynomial level set parametrisation for smooth closed surfaces from a regular
surface-point set and prove its uniqueness. This enables us to approximate a broad class of smooth surfaces by affine algebraic varieties. From such a
global polynomial level set parametrisation, differential-geometric quantities like mean and Gauss curvature can be efficiently and accurately computed. Even 4th-order terms such as the Laplacian of mean curvature are approximates with high precision. The accuracy performance results in a gain of computational efficiency, significantly reducing the number of surface points required compared to classic alternatives that rely on surface meshes or embedding grids. We mathematically derive and empirically demonstrate the strengths and the limitations of the present approach, suggesting it to be applicable to a large number of computational tasks in numerical differential geometry.

Keywords: Numerical differential geometry; surface approximation; mean curvature; Gauss curvature; level set

Verknüpfte Publikationen

  • ARXIV: 2212.11536 is previous version of this (Id 36064) publication

Downloads

Permalink: https://www.hzdr.de/publications/Publ-36064