Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries


Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries

Haldar, S.; Waentig, A. L.; Ramuglia, A. R.; Bhauriyal, P.; Khan, A. H.; Pastoetter, D. L.; Isaacs, M. A.; De, A.; Brunner, E.; Wang, M.; Heine, T.; Weidinger, I. M.; Feng, X.; Schneemann, A.; Kaskel, S.

Abstract

The strategic combination of redox-active triazine- or quinoxaline-based lithium-ion battery (LIB) mechanisms with the polysulfide ring-mediated lithium-sulfur battery (Li-SB) mechanism enabled the configuration of covalent organic-framework (COF)-derived lithium-organosulfide (Li-OrSB) battery systems. Two vinylene-linked frameworks were designed by enclosing polysulfide rings via postsynthetic framework sulfurization, allowing for the separate construction of triazine-polysulfide and quinoxaline-polysulfide redox couples that can readily interact with Li ions. The inverse vulcanization of the vinylene linking followed by the sulfurization-induced nucleophilic aromatic substitution reaction (SNAr) on the perfluorinated aromatic center of the COFs enabled the covalent trapping of cyclic-polysulfides. The experimentally observed reversible Li-interaction mechanism of these highly conjugated frameworks was computationally verified and supported by in situ Raman studies, demonstrating a significant reduction of polysulfide shuttle in a conventional Li-SB and opening the door for a COF-derived high-performing Li-OrSB.

Keywords: Batteries; Covalent organic frameworks; Electrolytes; Redox reactions; Lithiation

Permalink: https://www.hzdr.de/publications/Publ-38378