Quantum simulation of hadronic states with Rydberg-dressed atoms


Quantum simulation of hadronic states with Rydberg-dressed atoms

Wang, Z.; Wang, F.; Vovrosh, J.; Knolle, J.; Mintert, F.; Mukherjee, R.

Abstract

The phenomenon of confinement is well known in high-energy physics and can also be realized for low-energy domain-wall excitations in one-dimensional quantum spin chains. A bound state consisting of two domain-walls can behave like a meson, and in a recent work of Vovrosh et al. [PRX Quantum 3, 040309 (2022)] , it was demonstrated that a pair of mesons could dynamically form a meta-stable confinement-induced bound state (consisting of four domain-walls) akin to a hadronic state. However, the protocol discussed in Vovrosh et al. [PRX Quantum 3, 040309 (2022)] involving the use of interactions with characteristically non-monotonic distance dependence is not easy to come by in nature, thus, posing a challenge for its experimental realization. In this regard, Rydberg atoms can provide the required platform for simulating confinement-related physics. We exploit the flexibility offered by interacting Rydberg-dressed atoms to engineering modified spin-spin interactions for the one-dimensional transverse field Ising model. Our numerical simulations show how Rydberg-dressed interactions can give rise to a variety of effective potentials that are suitable for hadron formation, which opens the possibility of simulating confinement physics with Rydberg platforms as a viable alternative to current trapped-ion experiments.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-38425