NuScale-like SMR Model Development and Applied Safety Analyses with the Code Chain Serpent-DYN3D-ATHLET


NuScale-like SMR Model Development and Applied Safety Analyses with the Code Chain Serpent-DYN3D-ATHLET

Diaz Pescador, E.; Bilodid, Y.; Jobst, M.; Kliem, S.

Abstract

NuScale is an integral pressurized water reactor (iPWR) operated with light water driven by natural circulation through two helical coil steam generators (HCSGs). This work reports the safety analyses of a boron dilution and steam line break accidental sequences in a developed plant computational model based on the specifications from the Final Safety Analysis Report (FSAR). Multi-physics calculations are performed with the code chain Serpent-DYN3D-ATHLET. A state-of-the-art multi-dimensional vessel topology is developed with ATHLET for the accurate representation of flow and temperature fields, as well as spatial core power distribution. The static calculation results show agreement with the reference values from the FSAR. The boron dilution sequence shows a homogeneous core power excursion by the boron feedback, and the reactor is tripped upon “high pressurizer pressure” signal. During the steam line break sequence, the affected HCSG depressurizes rapidly and the reactor is tripped upon “low main steam pressure” signal. None of the transients violate safety margins. The adopted 3-D vessel modelling approach and applied multi-physics calculations are able to capture both transient physics within the reactor domain, and conclude that symmetric arrangement of the HCSG tubes enhance coolant mixing and prevent a heterogeneous core power excursion.

Keywords: NuScale-SMR; iPWR; Boron dilution; Steam line break; Serpent-DYN3D-ATHLET

Downloads

  • Zweitveröffentlichung erwartet ab 11.01.2025

Permalink: https://www.hzdr.de/publications/Publ-38564