In operando visualization of mass transfer in a sodium-zinc molten salt battery with liquid electrolyte


In operando visualization of mass transfer in a sodium-zinc molten salt battery with liquid electrolyte

Sarma, M.; Nash, W.; Weber, N.; Weier, T.

Abstract

To bring the novel Na-Zn molten salt battery to market, many unresolved issues – such as self-discharge, migration of Na away from the current collector, and electrolyte “creeping” – must be resolved. Within the framework of the Horizon 2020 project SOLSTICE, a working battery prototype must be delivered. To support this objective, a small-scale experimental cell that can be used for fundamental research has been built. The cell has been designed to permit in situ radiographic imaging of its interior. The aim is to charge and discharge this cell in a neutron beamline and an X-ray source, to observe mass transfer of electroactive species and any flow that occurs during cycling. Of most interest are how these phenomena depend on the geometry and chemical composition of the different cell components, e.g. the positive and negative current collectors.
With a completely liquid interior, all the cell’s components must retain their performance characteristics at its 600oC operating temperature. Besides thermal stress, the cell’s walls and current collectors must resist corrosion by liquid Zn, Na, and the molten salt electrolyte (as well as their vapors). Maintenance of this high internal temperature also requires sufficient thermal insulation, and – in an isolated test cell – an external heating system, and neither of these should interfere with the imaging techniques.
Preliminary attempts to cycle the cell for an extended period of time (>4 weeks) have been successful. Pilot imaging tests using neutron and X-ray radiography have confirmed that the different layers (the electrodes and electrolyte) can be distinguished from one another, and spatial variations in the chemical composition of the electrolyte can be resolved. However, corrosion remains a limitation for long-term structural stability, so optimization of the cell’s components is ongoing. Long-term cycling data and X-ray/neutron images will be presented in this talk, and their implications for improvements to the cell design will be discussed.

  • Vortrag (Konferenzbeitrag)
    4th International Sodium Battery Symposium (SBS4), 04.09.2023, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-38694