Collective out-of-plane magnetization reversal in tilted stripe domain systems via a single point of irreversibility


Collective out-of-plane magnetization reversal in tilted stripe domain systems via a single point of irreversibility

Heinig, P.; Salikhov, R.; Samad, F.; Fallarino, L.; Patel, G. I.; Kakay, A.; Kiselev, N. S.; Hellwig, O.

Periodic magnetic stripe domain patterns are a prominent feature of perpendicular anisotropy thin film systems. Here, we focus on the behavior of [Co(3.0 nm)/Pt(0.6 nm)]\textsubscript{$X$} multilayers within the transitional regime from preferred in-plane (IP), $X=6$, to out-of-plane (OOP), $X=22$, magnetization orientation, particularly, we examine a sample with $X=11$ repetitions, which exhibits a remanent state characterized by a significant presence of both OOP and IP magnetization components, here referred to as the "tilted" stripe domain state*. We investigate this specific sample with vibrating sample magnetometry, magnetic force microscopy and micromagnetic simulations, and find an unusual OOP field reversal behavior via a remanent parallel stripe domain state and a single point of irreversibility. Finally, we show that this characteristic reversal behavior is a rather general feature of transitional IP to OOP systems by comparing the Co/Pt multilayers with c-axis single Co thin films and Fe/Gd multilayers. \newline *[L. Fallarino et al., Phys. Rev. B 99, 024431 (2019)]

Keywords: tilted magnetization; single point of irreversibility; Co/Pt multilayer

Involved research facilities

Related publications

  • Poster
    87. Jahrestagung der DPG und DPG-Frühjahrstagung, 17.-22.03.2024, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-38928